夜莺-Nightingale
夜莺V7
项目介绍 功能概览
部署升级 部署升级
数据接入 数据接入
告警管理 告警管理
数据查看 数据查看
功能介绍 功能介绍
API FAQ
夜莺V6
项目介绍 架构介绍
快速开始 快速开始
黄埔营
安装部署 安装部署
升级
采集器 采集器
使用手册 使用手册
API API
数据库表结构 数据库表结构
FAQ FAQ
开源生态
Prometheus
版权声明
第1章:天降奇兵 第1章:天降奇兵
第2章:探索PromQL 第2章:探索PromQL
第3章:Prometheus告警处理 第3章:Prometheus告警处理
第4章:Exporter详解 第4章:Exporter详解
第5章:数据与可视化 第5章:数据与可视化
第6章:集群与高可用 第6章:集群与高可用
第7章:Prometheus服务发现 第7章:Prometheus服务发现
第8章:监控Kubernetes 第8章:监控Kubernetes
第9章:Prometheus Operator 第9章:Prometheus Operator
参考资料

In the log analysis, select instant query and choose the Loki data source to query logs.

Scenario 1: Query each log line with a 401 status {container="evaluate-loki-flog-1"} | json | status="401"

Scenario 2: Query the number of logs with a 401 status code in the last 5 minutes count_over_time({container="evaluate-loki-flog-1"} |= "401" [5m])

Scenario 3: Calculate the number of logs per second where the JSON field status is 404 sum by(container) (rate({container="evaluate-loki-flog-1"} | json | status=404 [1m]))

快猫星云 联系方式 快猫星云 联系方式
快猫星云 联系方式
快猫星云 联系方式
快猫星云 联系方式
快猫星云
OpenSource
开源版
Flashcat
Flashcat